32 research outputs found

    Trifecta and pentafecta outcomes following robot-assisted partial nephrectomy in a multi-institutional cohort of Indian patients

    Get PDF
    INTRODUCTION: The literature on studies reporting trifecta or pentafecta outcomes following robot-assisted partial nephrectomy (RAPN) in Indian patients is limited. The primary aim of this study was to report and evaluate the factors predicting trifecta and pentafecta outcomes following RAPN in Indian patients using the multicentric Vattikuti collective quality initiative (VCQI) database. METHODS: From the VCQI database for patients who underwent RAPN, data for Indian patients were extracted and analyzed for factors predicting the achievement of trifecta and pentafecta following RAPN. Trifecta was defined as the absence of complications, negative surgical margins, and warm ischemia period shorter than 25 min or zero ischemia. Pentafecta covers all the trifecta criteria as well as \u3e90% preservation of estimated glomerular filtration rate (eGFR) and no stage upgrade of chronic kidney disease at 12 months. RESULTS: In this study, among 614 patients, the trifecta was achieved in 374 patients (60.9%) and pentafecta was achieved in 24.2% of the patients. Patients who achieved trifecta had significantly higher mean age (54.1 vs. 51.0 years, P = 0.005), body mass index (BMI) (26.7 vs. 26.03 kg/m 2, P = 0.022), and smaller tumor size (38.6 vs. 41.4 mm, P = 0.028). The preoperative eGFR (84.2 vs. 91.9 ml/min, P = 0.012) and renal nephrometry score (RNS) (6.96 vs. 7.87, P ≀ 0.0001) were significantly lower in the trifecta group. Comparing patients who achieved pentafecta to those who did not, we noted a statistically significant difference between the two groups for tumor size (36.1 vs. 41.5 mm, P = 0.017) and RNS (6.6 vs. 7.7, P = 0.0001). On multivariate analysis, BMI and RNS were associated with trifecta outcomes. Similarly, only RNS was identified as an independent predictor of pentafecta. CONCLUSIONS: RNS and BMI were independent predictors of the trifecta. At the same time, RNS was identified as an independent predictor of pentafecta following RAPN

    Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report

    Get PDF
    The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate

    Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson’s Disease Affected by COVID‐19: A Narrative Review

    Get PDF
    Background and Motivation: Parkinson’s disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID‐19 causes the ML systems to be-come severely non‐linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well‐explained ML paradigms. Deep neural networks are powerful learning machines that generalize non‐linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID‐19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID‐19 framework. We study the hypothesis that PD in the presence of COVID‐19 can cause more harm to the heart and brain than in non‐ COVID‐19 conditions. COVID‐19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID‐19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID‐19 lesions, office and laboratory arterial atherosclerotic image‐based biomarkers, and medicine usage for the PD patients for the design of DL point‐based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID‐ 19 environment and this was also verified. DL architectures like long short‐term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID‐19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID‐19. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment

    Get PDF
    Motivation: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Objective: Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches. Methodology: PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems. Conclusions: The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals. © 2022 by the authors

    Nutrition, atherosclerosis, arterial imaging, cardiovascular risk stratification, and manifestations in COVID-19 framework: a narrative review.

    Get PDF
    Background: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. Layout: The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. Conclusions: By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment

    Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study

    Get PDF
    A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients

    Renal Cell Carcinoma Associated with Xp11.2 Translocation/TFE3 Gene Fusion: A Rare Case Report with Review of the Literature

    Get PDF
    Introduction. The recently recognized renal cell carcinomas associated with Xp11.2 translocations are rare tumors predominantly reported in children. Chromosome Xp11.2 translocation results in gene fusion related to transcription factor E3 (TFE3) that plays an important role in proliferation and survival. Case Report. Herein, we present two cases of a TFE3 translocation-associated RCC in young female adults, one detected incidentally and the other one presenting with gross hematuria. Tumor is characterized by immunohistochemistry and a literature review with optimal treatment regimen is presented. Discussion. Xp11.2 translocation RCCs in adult patients are associated with advanced stages, large tumors, and extracapsular disease and usually have an aggressive clinical course. Conclusion. In TFE3 RCC, the genetic background may not only contribute to tumorigenesis, but also determine the response to chemotherapy and targeted therapy. Therefore it is necessary to diagnose this tumor entity accurately. Because of the small number of TFE3 gene fusion-related renal tumors described in the literature, the exact biologic behavior and impact of current treatment modalities remain to be uncertain

    Role of GRE imaging in cerebral diseases with hemorrhage: A case series

    No full text
    Gradient recalled echo (GRE) T2 weighted imaging is more widely used as a standard magnetic resonance (MR) pulse sequence because of its exquisite sensitivity for detection of cerebral hemorrhages. Signal loss on GRE sequence is due to increased sensitivity of this sequence to magnetic susceptibility induced by static field inhomogeneities arising from paramagnetic blood breakdown products. T2 FNx01 signal intensity loss seen in GRE sequence is greater with longer TE, smaller flip angle, and larger magnetic field strength. The purpose of this review is to discuss the role of GRE imaging in cerebral disorders with bleed. Because of the sensitivity of this sequence to microbleeds, we describe its edge over baseline imaging sequences to provide insight in the etiology of certain diseases

    Robot-assisted radical nephroureterectomy with extended template lymphadenectomy for upper tract urothelial carcinoma: An outcome analysis

    No full text
    Introduction: Robot-assisted radical nephroureterectomy (RANU) with extended template lymphadenectomy (E-LND) is the leading treatment option for nonmetastatic upper tract urothelial carcinoma. Due to the rarity of this disease, there is a lack of consensus regarding the best approach and the extent of lymphadenectomy. We report our technique and its initial outcomes from the retrospective evaluation of a prospectively maintained database of 11 consecutive cases of RANU + E-LND. To the best of our knowledge, our series represents the first published experience of this procedure from India. Materials and Methods: RANU was performed in 11 patients (including two patients with simultaneous radical cystectomy) with the da Vinci Xi system. Pelvic and upper ureteric tumors were operated without re-docking or repositioning, using the port hopping feature. For the lower ureteric tumors, the patient was repositioned and the robot was re-docked to ensure completeness of pelvic lymphadenectomy. E-LND was performed in all the patients as per the templates described in previous studies. Results: Median age was 67.5 years (range 52–71). Median console time and blood loss were 170 min (range 156–270) and 150 cc (range 25–500), respectively. Median hospital stay was 3 days (range 2–8). One patient developed paralytic ileus in the postoperative period (Clavien Dindo Grade 1). None had a positive surgical margin and the median lymph node yield was 22.5 (range 7–47). Median follow-up was 9 months during which one patient developed metastatic systemic recurrence. All other patients were disease free at the last follow-up. Conclusions: A robotic approach to radical nephroureterectomy with E-LND is feasible and safe and does not appear to compromise the short-term oncological outcomes as defined by lymph node yields and margin positivity. At the same time, it offers the benefits of minimal invasion and results in swifter patient recovery from this extensive surgery
    corecore